
Design and Analysis of DNA Circuits
using Probabilistic Model Checking

Luca Cardelli ∗ Marta Kwiatkowska † Matthew R. Lakin∗ David Parker †

Andrew Phillips∗

Abstract

Designing correct, robust DNA circuits is difficult because of the many possibilities for unwanted interference
between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA
circuits and the DSD language as a means of formally expressing these circuits. We demonstrate the use of
formal verification techniques, in particular model checking and probabilistic model checking, to analyse both the
correctness and performance of such designs. We use the probabilistic model checker PRISM, in combination
with DSD, to detect and fix an error in a simple strand displacement program, and to analyse the kinetics of
the system. We also illustrate how similar techniques can be used on more complicated systems with potentially
infinite chemical reaction networks, such as polymerizing systems.

1 Introduction
Molecular computing is a relatively new field that aims to construct information-processing circuits at the molecular
level, using for example DNA. The technology has scope to be applied in a wide range of important application
areas such as bio-sensing, biomimetic molecular manufacture and drug delivery. Designing correct and robust DNA
circuits, however, is challenging. This is due, in particular, to the possibility of unwanted interference between
molecules in the system. The DNA Strand Displacement (DSD) language [20] has been proposed as a means of
formally expressing DNA circuits, building on the success of related languages to capture the dynamics of molecular
networks [21, 19]. DSD is supported by software that facilitates the design and simulation of DNA circuits.

In this paper, we propose the use of formal verification techniques to check the correctness of and identify faulty
behaviour in DNA circuit designs. We focus on model checking, a fully-automated approach to verification based on
the exhaustive exploration of a finite-state model. We also employ probabilistic model checking, which generalises
these techniques to the analysis of probabilistic models of systems that exhibit stochastic behaviour, for example due
to failures or unpredictable components. Whereas conventional (non-probabilistic) model checking techniques can
be used to check correctness properties such as “processes 1 and 2 never simultaneously access a shared resource”,
probabilistic model checking allows verification of quantitative guarantees such as “the probability of an airbag
failing to deploy within 0.02 seconds is at most 10−6”. Furthermore, probabilistic model checking can be used to
evaluate a wide range of quantitative properties such as performance, e.g. “what is the expected time for a packet
of data to be sent across the network?”. Probabilistic model checking has already been successfully applied to the
analysis of systems from a wide range of application areas, from communication protocols like Bluetooth to quantum
cryptography. In particular, it has also been used in the domain of systems biology to analyse cell signalling pathways
[5, 13].

In the next two sections, we give a brief introduction to DNA strand displacement (DSD) and probabilistic model
checking. We then describe the application of the probabilistic model checking tool PRISM [14] to the analysis of a
simple DSD program from [6]. We detect and fix a flaw in this program, and then analyse the kinetics of the system.
Finally, we discuss how these techniques can be extended to more complicated, potentially infinite-state, systems
that use polymerization.

∗Microsoft Research, 7 JJ Thomson Avenue, Cambridge, CB3 0FB, UK
†Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK

1

Figure 1: Toehold-mediated DNA branch migration and strand displacement

2 DNA strand displacement
Among the many techniques being developed for molecular computing [12], DNA strand displacement has been
proposed as a mechanism for performing computation with DNA strands [23, 9]. In most schemes, single-stranded
DNA acts as signals and double-stranded (or more complex) DNA structures act as gates. Various circuits have been
demonstrated experimentally [25]. The strand displacement mechanism is appealing because it is autonomous [11]:
once signals and gates are mixed together, computation proceeds on its own without further intervention until the
gates or signals are depleted (output is often read by fluorescence). The energy for computation is provided by the
gate structures themselves, which are turned into inactive waste in the process. Moreover, the mechanism requires
only DNA molecules: no organic sources, enzymes, or transcription/translation machinery is required, and the whole
apparatus can be chemically synthesized and run in standard laboratories.

The main aims of this approach are to harness computational mechanisms that can operate at the molecular level
and produce nano-scale structures under program control, and somewhat separately that can intrinsically interface
to biological entities [4]. The computational structures that one may easily implement this way (without some form
of unbounded storage) vary from Boolean networks, to state machines, to Petri nets. The last two are particularly
interesting because they take advantage of DNA’s ability to encode symbolic information: they operate on DNA
strands that represent abstract signals.

The fundamental mechanism in many of these schemes is toehold mediated branch migration and strand dis-
placement [25], which implements a basic step of computation. It operates as shown in Table 1, where each letter
and corresponding segment represents a DNA domain (a sequence of nucleotides, C,G,T,A) and each DNA strand is
seen as the concatenation of multiple domains. Single strands have an orientation; double strands are composed of
two single strands with opposite orientation, where the bottom strand is the Watson-Crick, C-G, T-A, complement
of the top strand. The “short” domains hybridize (bind) reversibly to their complements, while the “long” domains
hybridize irreversibly; the exact critical length depends on physical conditions. Distinct letters indicate domains that
do not hybridize with each other.

In the first reaction of Figure 1, a short toehold domain t initiates binding between a double strand and a single
strand. After the (reversible) binding of the toehold, the “x” domain of the single strand gradually replaces the
top “x” strand of the double strand by branch migration. The branching point between the two top “x” domains
performs a random walk that eventually leads to displacing the “x” strand. The final detachment of the top “x”
strand makes the whole process essentially irreversible, because there is no toehold for the reverse reaction. The
second reaction illustrates the case where the top domains do not match: then the toehold binds reversibly and no
displacement occurs. The third reaction illustrates the more detailed situation where the top domains match only
initially: the branch migration can proceed only up to a certain point and then must revert back to the toehold:
hence no displacement occurs and the whole reaction reverts.

The fourth reaction illustrates a toehold exchange, where a branch migration (of strand “tx”) leads to a displace-
ment (of strand “xt”), but where the whole process is reversible via a reverse toehold binding and branch migration.
The first (irreversible) and fourth (reversible) reactions are the fundamental steps that can be composed to achieve

2

computation by strand displacement.

2.1 The DSD language

The DSD language [20] provides a textual syntax for expressing the structure of DNA molecules such as those
portrayed graphically in Figure 1. The semantics of the DSD language defines a formal translation of a collection
of DNA molecules into a system of chemical reactions which captures the possible interactions between the strands
of DNA. The DSD language includes syntactic and graphical abbreviations which allow us to represent a particular
class of DNA molecules in a concise manner. The class of molecules in question is those without secondary structure –
that is, only single-stranded DNA sequences may hang off the main double-stranded backbone of the molecule. This
rules out complicated tree-like or pseudo-knotted structures, which greatly simplifies the definition of the semantics
but still allows a wide variety of interesting systems to be written.

The syntax of the DNA strand displacement language is defined in terms of domain sequences S, L, R, gates G

and molecules D. A domain sequence S is a concatenation of one or more domains, which can be long domains N or
short domains N^. Each domain represents a nucleotide sequence, where short domains, also known as toeholds, are
assumed to be between 4 and 10 nucleotides in length.

DNA molecules can be single or double stranded. A single upper strand <S> denotes a sequence of domains S

oriented from left to right on the page, while a single lower strand {S} denotes a sequence S oriented from right to
left on the page. A double strand [S] denotes an upper strand <S> bound to the complement lower strand {S*},
where S* denotes a sequence complementary to S. A gate G can be a double stranded molecule {L’}<L>[S]<R>{R’}

with overhanging single strands. This effectively represents an upper strand <L S R> bound to a lower strand {L’

S* R’} along the double-stranded region [S]. The sequences L, R, L’ and R’ can potentially be empty, in which case
we simply omit them. A gate can also be a concatenation G1:G2 of two gates G1 and G2 that share a common lower
strand, or a concatenation G1::G2 of two gates that share a common upper strand.

A molecule D can be an upper strand <S>, a lower strand {S} or a gate G. Multiple molecules D1, D2 can be present
in parallel, written D1|D2. A domain N can also be restricted to molecules D, written new N D. This represents the
assumption that the domain is not used by any other molecules outside of D. We also allow module definitions of
the form X(m)=D, where m are the module parameters and X(n) is an instance of the module D with parameters m

replaced by n. We assume a fixed set of module definitions, which are declared at the start of the program. The
definitions are assumed to be non-recursive, such that a module cannot invoke itself, either directly or indirectly via
another module.

We define the following conditions for well-formed molecules: (1) both a long domain and its complement are
not unbound simultaneously; and (2) Both a sequence of two or more toeholds and its complement are not unbound
simultaneously. This ensures that two single-stranded molecules can only interact with each other via complementary
short domains. We assume that all molecules are well-formed. This textual syntax and the corresponding graphical
representation are presented in Table 1.

If two gates are concatenated along the upper (or lower) strand, we typically omit the colon (or colons) in the
graphical representation and simply connect the appropriate strands to form a single continuous strand. For example,
we abbreviate the gate on the left below by the graphical abbreviation on the right.

: ≈

If we fix a translation of domains into actual DNA sequences then we can view a more realistic representation of
the above gate which shows the individual base pairs:

3

Table 1: Syntax of the DNA strand displacement language, in terms of gates G, molecules D and sequences S, L, R.
For each construct, the graphical representation below is equivalent to the program code above, where applicable.

D syntax description

G {L’}<L>[S]<R>{R’} Double stranded
molecule [S] with
overhanging single
strands <L>, <R> and
{L’}, {R’}

G1:G2 Molecules with shared
lower strand

G1::G2 Molecules with shared
upper strand

D {S} Lower strand with
sequence S

<S> Upper strand with
sequence S

G Gate G

D1 | D2 Parallel molecules D1, D2

D1 D2

new N D Molecules D with private
domain N

X(n) Module X with
parameters n

4

The distinction between “upper” and “lower” strands is simply an artifact of their representation on the page and
has no basis in physical reality. Thus we identify DNA molecules in DSD up to rotation symmetry. For example,
the following are considered to be equivalent:

≈

{a b c} ≈ <c b a>

≈

[a b c]<d>:[e f] ≈ [f* e*]::{d}[c* b* a*]

Note that when we rotate a gate, the domains in the double-stranded segments are complemented in the syntax.
This is because we assume that the domain which appears in the syntax is the domain on the “upper” side of the
double strand (as viewed on the page). We also consider gates to be equivalent up to migration of overhanging
branches on double-stranded segments, as illustrated by the following structural congruence rule.

before eq after

EM {L1’}<L1>[S1]<S R1>:

<L2>[S S2]<R2>{R2’}

≡ {L1’}<L1>[S1 S]<R1>:

<L2 S>[S2]<R2>{R2’}

The following table illustrates some of the rules governing interactions between DNA molecules represented in
the DSD language. These rules are used to define a translation from a collection of DNA molecules into a system
of chemical reactions which can be used to simulate or analyse their behaviour. We present the rules as single-step
reduction rules, where the double-headed arrow indicates a reversible reaction. The arrows are labelled with rate
values which are used to parameterise an exponential rate distribution.

5

before red after

RB <L N^ R> | {L’ N^ R’}
N+←→
N-

{L’}<L>[N^]<R>{R’}

RD {L1’}<L1>[S1]<S2 R1>:
S2~−→ {L1’}<L1>[S1 S2]<R1>{R2’} |

<L2>[S2]<R2>{R2’} <L2 S2 R2>

RC {L’}<L>[S]<N^ R>{N^* R’}
N~−→ {L’}<L>[S N^]<R>{R’}

In order to improve efficiency and reduce the size of the resulting chemical reaction networks we may ignore
reactions where a strand binds onto a gate but cannot perform any subsequent reaction other than an unbinding. In
this case we replace the RB rule from the previous table with the following binding rule.

before red after

PM <L1 N^ S R1> |

{L’ N^*}<L>[S R2]<R>{R’}

N+−→ {L’}<L1>[N^]<S R1>:

<L>[S R2]<R>{R’}

2.2 The Visual DSD tool

The Visual DSD tool is an implementation of the DSD language. It can be run either in a web browser or from the
command line. As well as implementing the compilation of DNA molecules into chemical reactions, the tool includes
other features such as stochastic and deterministic simulation, visualisation of the chemical reaction network and
SBML export of the model. In this paper, we develop additional functionality based on an exhaustive enumeration
of the state space of a DSD system. A state is a possible configuration of the system, i.e. a multiset of species where
the multiplicity of a particular species is referred to as its population. The state space is a graph of all possible
transitions between states, using reactions generated from the semantics of the DSD language. This contrasts with
stochastic simulation, where only a single path through the state graph is explored. Furthermore, we can annotate
each transition between states with the rate at which it occurs, for which values can be determined experimentally.
More precisely (see [10]) the delay before the occurrence of the transition can be assumed to be modelled by an
exponential distribution, making the resulting annotated model a continuous-time Markov chain.

We illustrate these concepts with the following simple example program that includes a DNA gate and two strands
which may bind onto it.

6

({t^*}[x]:{t^*}[y] | <t^ x> | <t^ y>)

The binding reactions of the <t^ x> and <t^ y> strands onto the gate could happen in either order and produce
the same end result, which is illustrated by the fact that there are two (equally probable) paths through the state
graph shown below.

If we were to run a stochastic simulation the simulator would randomly choose to explore one path or the other,
whereas by enumerating the entire state space we essentially explore all possible paths. This means that state space
enumeration allows for more kinds of analysis compared to a simple stochastic simulation, although the downside is
that it can be very computationally expensive as the state spaces can grow very rapidly as species are added to the
system.

3 Probabilistic Model Checking and PRISM
Model checking is an automated formal verification technique, based on the exhaustive construction and analysis of
a finite-state model of the system being verified. The model is usually a labelled state-transition system, in which
each state represents a possible configuration of the system and each transition between states represents a possible
evolution from one configuration to another. The desired correctness properties of the system are typically expressed
in temporal logics, such as CTL (Computation Tree Logic) or LTL (Linear-time Temporal Logic). We omit here a
precise description of these logics (see, for example, [8, 3] for detailed coverage); instead we give below some typical
CTL formulae, along with their corresponding informal meanings:

• ∀�¬(access1 ∧ access2) - “processes 1 and 2 never simultaneously access a shared resource”;

• ∀♦ end - “the algorithm always eventually terminates”

• ∃(¬fail U end) - “it is possible for the algorithm to terminate without any failures occurring”

Once the desired correctness properties of the system have been formally expressed in this way, they can then be
verified using a model checker. This performs an exhaustive analysis of the system model, for each property either
concluding that it is satisfied or, if not, providing a counterexample illustrating why it is violated.

Probabilistic model checking is a variant of model checking for the verification of systems that exhibit stochastic
behaviour. In this case, the models that are constructed and analysed are augmented with quantitative information
regarding the likelihood that transitions occur and the times at which they do so. In practice, these models are
typically Markov chains or Markov decision processes. To model systems of reactions at a molecular level, the
appropriate model is continuous-time Markov chains (CTMCs), in which transitions between states are assigned
(positive, real-valued) rates. These values are interpreted as the rates of negative exponential distributions.

7

Formally, letting ≥0 denote the set of non-negative reals and AP be a fixed, finite set of atomic propositions
used to label states with properties of interest, a CTMC is a tuple (S,R, L) where:

• S is a finite set of states;

• R : (S × S) → ≥0 is a transition rate matrix ;

• L : S → 2AP is a labelling function which associates each state with a set of atomic propositions.

The transition rate matrix R assigns rates to each pair of states, which are used as parameters of the exponential
distribution. A transition can only occur between states s and s� if R(s, s�)>0 and, in this case, the probability of
the transition being triggered within t time-units is 1 − e−R(s,s�)·t. Typically, in a state s, there is more than one
state s� for which R(s, s�)>0; this is known as a race condition and the first transition to be triggered determines
the next state. The time spent in state s before any such transition occurs is exponentially distributed with the rate
E(s) =

�
s�∈S R(s, s�), called the exit rate. The probability of moving to state s’ is given by R(s, s�)/E(s).

A CTMC can be augmented with rewards, attached to states and/or transitions of the model. Formally, a reward
structure for a CTMC is a pair (c, C) where:

• c : S → R≥0 is a state reward function;

• C : (S × S) → ≥0 is a transition reward function.

State rewards can represent either a quantitative measure of interest at a particular time instant (e.g. the number
of phosphorylated proteins in the system) or the rate at which some measure accumulates over time (e.g. energy
dissipation). Transition rewards are accumulated each time a transition occurs and can be used to compute, e.g. the
number of protein bindings over a particular time period.

Properties of CTMCs are, like in non-probabilistic model checking, expressed in temporal logic, but are now
quantitative in nature. For this, we use probabilistic temporal logics such as CSL [1, 2] and its extensions for reward-
based properties[17] . For example, rather than verifying that ‘the protein always eventually degrades’, using CSL
allows us to ask ‘what is the probability that the protein eventually degrades?’ or ‘what is the probability that
the protein degrades within t hours?’. Reward-based properties include ‘what is the expected time that proteins
are bound within the first t time units?’ and ‘what is the expected number of phosphorylations before relocation
occurs?’. For further details on probabilistic model checking of CTMCs, see for example [2, 17].

PRISM [14] is a probabilistic model checking tool developed at the Universities of Birmingham and Oxford. It
provides support for several types of probabilistic models, including CTMCs. Models are specified in a simple, state-
based language based on guarded commands. Support for several other high-level model description languages has
been made available through language-level translations to the PRISM modelling language. Of particular relevance
here is PRISM’s ability to import SBML [15] specifications, which have an underlying CTMC semantics. Translations
from stochastic process algebra such as PEPA and the stochastic π-calculus [21] have also been developed.

PRISM can then be used to specify and verify a range of properties of CTMCs, including those expressed in
the logic CSL and the reward-based extension of[17]. The underlying computation performed to apply probabilistic
model checking involves a combination of:

• graph-theoretical algorithms, for conventional temporal logic model checking and qualitative probabilistic model
checking;

• numerical computation, for quantitative probabilistic model checking, i.e. calculation of probabilities and reward
values.

Graph-theoretical algorithms are comparable to the operation of a conventional, non-probabilistic model checker.
For numerical computation, PRISM typically solves linear equation systems or performs transient analysis. Due to
the size of the models that need to be handled, the tool uses iterative methods rather than direct methods. For
solution of linear equation systems, it supports a range of well-known techniques including the Jacobi, Gauss-Seidel
and SOR (successive over-relaxation) methods; for transient analysis of CTMCs, it employs uniformisation.

One of the most notable features of PRISM is that it uses state-of-the-art symbolic approaches, using data
structures based on binary decision diagrams [16]. These allow for compact representation and efficient manipulation
of large, structured models by exploiting regularities exhibited in the high-level modelling language descriptions.
The tool actually provides three distinct engines for numerical solution: the first is purely symbolic; the second uses

8

sparse matrices; and the third is a hybrid, using a combination of the two. The result is a flexible implementation
which can be adjusted to improve performance depending on the type of models and properties being analysed.

PRISM also incorporates a discrete-event simulation engine. This allows approximate solutions to be generated
for the numerical computations that underlie the model checking process, by applying Monte Carlo methods and
sampling. These techniques offer increased scalability, at the expense of numerical accuracy. Using the same un-
derlying engine, PRISM includes a tool to perform manual execution and debugging of probabilistic models. Other
functionality provided by the user interface of the tool includes a graph-plotting component for visualisation of
numerical results and editors for the model and property specification languages.

4 Model Checking DSD Programs
In this section, we illustrate the use of model checking to detect design errors in and evaluate the performance of DNA
strand displacement (DSD) programs. We also discuss an extension to a system that can construct DNA polymers.

4.1 Two-domain transducers

Our case study involves the two-domain gate scheme proposed by Cardelli in [6], where implementations for trans-
ducers, join gates and fork gates are given in a subset of the DSD language [20]. The two-domain scheme includes
only simple strands consisting of a short toehold domain and a longer recognition domain and simple gates without
overhanging strands. These restrictions are useful in practice for a number of reasons: the gate designs only require
a single toehold, the molecules are simple to construct and the lack of overhangs means that the kinetics of the
interactions are easier to predict. The following figure after [6] shows some DNA molecules which can be constructed
under this restricted syntax.

We will concern ourselves with the simplest circuit from [6]: the signal transducer. A transducer Txy turns a
signal strand <t^ x> into a signal strand <t^ y>. A chemical reaction network for this program is shown in Figure 2.
The graph was constructed using the Visual DSD tool following assumptions from [26] about the kinetics of toehold
binding, unbinding and strand displacement reactions. We assume that toehold binding is sufficiently slow relative
to branch migration, strand displacement and toehold unbinding, such that toehold binding has a finite rate while
the other reactions happen instantaneously.

4.2 A faulty design: Serial transducers

We begin by analysing a DSD program for the serial transducer “Txy | Tyz | <t^ x>”, which should translate the
input signal <t^ x> into the intermediate signal <t^ y> and then translate this into the output signal <t^ z>. The
DSD script for this program is as follows.

new t

new a

def T(N,x,y) =

(N * <t^ a>

| N * <y t^>

| N * t^*:[x t^]:[a t^]:[a] (* Input gate *)

| N * [x]:[t^ y]:[t^ a]:t^* (* Output gate *))

(<t^ x> | T(1,x,y) | T(1,y,z))

This simple script defines a domain t which is used throughout as a toehold domain and a domain a which is
a long recognition domain. The module T(N,x,y) expands out to give N copies of the signal transducer gate Txy.
Finally the initial configuration of the system is specified, which includes one copy of Txy and one copy of Tyz along
with a single input signal <t^ x>.

We analysed this program by enumerating the reaction network using Visual DSD, exporting it to SBML and
then importing this to the PRISM probabilistic model checker for analysis. PRISM is able to exhaustively explore the

9

Figure 2: Chemical reaction network for a single two-domain transducer

10

Terminal state 1 Terminal state 2

Figure 3: Terminal states for the first transducer design

corresponding CTMC model that captures all possible behaviour of the system. For this relatively small program,
there are 56 states and 147 transitions. One way to check the correctness of the serial transducer program is to verify
that it is always possible to get to a configuration in which the output signal <t^ z> is present, and that in all cases
there is an intermediate state in which <t^ y> is present. We can express this with the CTL properties ∀♦tz and
¬(∃(¬tyUtz) where ty and tz are atomic propositions labelling states of the model in which the populations of the
signals <t^ y> and <t^ z>, respectively, are 1.

PRISM can be used to check the validity of such properties. In this case, we find that the first property is true,
but the second is violated. Investigation shows that the model includes two terminal (or “deadlock)” states, i.e.
states from which no further transitions are possible.The populations of the various molecular species in these two
terminal states are illustrated in Figure 3.

In this case, terminal state 2 is the result that we would anticipate: this state contains the output strand <t^

z> along with the inert garbage left over from correct execution of the two transducers. However, terminal state
1 is incorrect – even though the output strand <t^ z> is produced we see that some constituent molecules of the
transducers are left unused and with exposed toehold domains (i.e. they are not inert). Model checking the second
property also produces a counterexample, i.e. a trace through the model that illustrates why the property fails. In
this case, the trace ends in terminal state 1. The first few reactions proceed as one would expect.

The problem arises because the <a t^> strand can now interact with molecules from the Tyz transducer, causing
the following reactions.

These reactions produce the output strand <z t^>. There are some subsequent reactions which tidy up as many
as possible of the molecules with exposed toeholds, but there are some non-inert molecules left. Thus the problem is

11

Figure 4: Termination probabilities over time for the first transducer design

that the <a t^> strand can prematurely activate the Tyz transducer to produce <t^ z>, skipping the intermediate
step of producing the <t^ y> strand and leaving parts of the transducers unused. This problem arises because the two
transducers share a common recognition domain a which allows them to interfere with each other. The possibility of
such errors in transducer implementations was noted by Cardelli [6] where it was also noted that state-space analysis
is required to prove that correct termination is guaranteed, even for simple examples like those we consider here.

PRISM can also evaluate the likelihood that such an error will occur. Figure 4 shows the probability of ending
up in each terminal state against time. We note that as time increases, the probability that the program terminates
tends to 1. This reflects the fact that the only loops in the program are from reversible reactions – the presence
of irreversible garbage collection reactions means that the system tends to be pulled towards a terminating state.
When time is small the system is more likely to terminate in the error state (terminal state 1) than the correct state
(terminal state 2). This reflects the fact that the path to terminal state 1 is much shorter than the path to terminal
state 2, because the incorrect execution omits some of the transducer steps. When time is large this is reversed and
the system is slightly more likely to terminate in the correct state. To four decimal places, the overall probabilities
of reaching a particular terminal state are as follows, along with the PRISM queries which were used to compute
them:

P(correct termination) = 0.5343 (P=?[F “correct_deadlock”])

P(error termination) = 0.4656 (P=?[F “error_deadlock”])

where “correct_deadlock” and “error_deadlock” are PRISM labels (i.e. atomic formulae) which pick out terminal
state 2 and terminal state 1 respectively. Thus our program is only slightly more likely to execute correctly than to
execute incorrectly.

If we run multiple transducers and input strands in parallel, however, an interesting effect occurs. With n copies
of Txy, n copies of Tyz and n input strands <t^ x>, the probability of terminating in the correct state increases as
n increases. This happens because the other copies of the transducers can help to “unblock” a transducer that has
taken the wrong path. Figure 5 illustrates this trend as n increases up to 4. For larger values of n, the models
become too large to analyse. The probability of landing in an “error” state includes any terminal state which is
not the correct one (when n > 2 there are multiple terminal states which are incorrect). This suggests that, if the
population of transducers is large enough, we can simplify the construction of the system by sharing a single toehold
between different transducer circuits and still have a high probability of producing the correct behaviour.

12

Figure 5: Termination probabilities for multiple parallel instances of our first transducer design

4.3 A repaired serial transducer design

As mentioned above, the problem with our program is that the Txy and Tyz transducers both use the recognition
domain a which allows unwanted cross-talk between the two transducers. We can fix this bug by moving the
declaration of a into the T(N,x,y) module, producing the following DSD script.

new t

def T(N,x,y) =

new a

(N * <t^ a>

| N * <y t^>

| N * t^*:[x t^]:[a t^]:[a] (* Input gate *)

| N * [x]:[t^ y]:[t^ a]:t^* (* Output gate *))

(<t^ x> | T(1,x,y) | T(1,y,z))

In this program, the new a declaration will be evaluated once for Txy and once for Tyz, producing two different
recognition domains which DSD tags as a and a.1. Thus, the new a declaration is a means of specifying which
DNA domains need to be distinct when multiple circuits are created. This suffices to prevent cross-talk – the state
space for this program contains 107 transitions between 41 states and just one terminal state. The populations of
the species in the terminal state are as shown below. These are as one would expect from serialised executions of the
two transducers – there is a single output strand <t^ z> along with the inert garbage from two transducer gates.

13

Figure 6: Termination probabilities over time for the second transducer design, with a single input strand and
multiple copies of the transducer.

Having verified that our modified program is executing correctly, we can again use probabilistic model checking
to explore the kinetics of the system. Figure 6 shows the effect of adding additional copies of the modified Txy and
Tyz transducer circuits, though still with only a single input strand <t^ x>. Note that it is perfectly acceptable for
multiple copies of a particular transducer to share a single recognition domain, because they cannot cross-talk in a
way which causes the system to behave incorrectly. This is reflected in the fact that there is still only one terminal
state, irrespective of how many additional copies are added. As expected, increasing the population of the transducer
circuits reduces the expected time to reach a terminal state. Thus, adjusting the number of copies of the transducer
circuit can be used to fine-tune its response time. The plot clearly illustrates diminishing returns as the population
of the transducer circuit increases, due to the reversible nature of the reactions. The plot also illustrates a more
general point: that it is still possible to analyse subsystems with large numbers of molecules, provided the number
of parallel execution paths is reasonably small. The fact that there is only a single input strand significantly limits
the parallel nature of the system. However, when we consider systems with both multiple input strands and multiple
transducer circuits in parallel, the state space becomes intractable after only 4 copies of the input. Thus, significant
challenges remain before we can effectively analyse practical systems.

If we increase the populations of both the modified transducer circuit and input strands, as described in Figure 5,
we find that the system still only has one terminal state. This reflects the fact that the transducer circuits cannot
cross-talk because each transducer circuit has a unique recognition domain. The size of the state graph increases to
593 states (2615 transitions) when n = 2 and 4870 states (28341 transitions) when n = 3, which means we are still
faced with a combinatorial explosion in the number of states as the number of circuits and inputs is increased.

4.4 Hairpin-free hybridization chain reaction

The approach to state-space analysis described above relies on the fact that the chemical reaction network for the
system is finite and can hence be computed in its entirety. However, many systems of interest do not have finite
chemical reaction networks and therefore cannot be analysed using this technique. These include implementations
of Turing-powerful computational models such as stack machines [22] and other systems which can assemble DNA
polymers [7]. In this section we describe work on an alternative modelling strategy which allows us to analyse the
state graph corresponding to the reachable subset of a potentially infinite chemical reaction network.

As an example we use a hairpin-free variant of hybridization chain reactions (HCR). This is timely as HCR was
recently used as a mechanism to trigger cell death when cancer markers are present [24]. A DSD script for a simple
example of three monomers assembling to form a three-unit polymer is as follows.

14

Figure 7: Example reactions from the hairpin-free HCR scheme

def XS = 1000

def N = 3

(<t^ a> (* Initiator *)

| N * {t^*}[a u^]{b*} (* Monomer 1 *)

| XS * [a]{u^*} (* Collector 1 *)

| XS * [b]<t^> (* Collector 2 *)

| N * <u^>[b t^]<a> (* Monomer 2 *))

The formation of the polymer chain consists of a series of simple strand displacement and polymerization reactions
as shown in Figure 7, with additional irreversible reactions where the “collectors” perform garbage collection to keep
the reaction moving in the forward direction. Since the chemical reaction network is infinite we cannot directly
export it to SBML as above. In the general case, in order to determine the set of reactions that are actually possible
it is necessary to explore the state space to some degree. This effectively rules out generating the state space from
the set of reactions. We have solved this problem by enumerating the reachable state space of the system within
the Visual DSD tool itself. By taking the populations of species into account we construct the reachable state space
incrementally, using a just-in-time (JIT) compilation approach similar to that described in [18]. This produces a
state space with 50 states and 133 transitions, and a single terminal state. The initial and terminal states of the
system are shown in Figure 8.

As we can see, the sets of three monomer units and the single initiator strand <t^ a> have been used up and
a three-unit polymer has been produced. Constructing the state space within DSD in this way is a very attractive
means of analysing systems such as hairpin-free HCR and stack machines. Some straightforward programming work
is needed to enable tighter integration between the state space graph produced in DSD and the PRISM model
checker, to allow these models to be verified and quantitatively analysed. The ability to tag particular states of
interest within DSD so that PRISM can immediately recognise them would also be very useful.

5 Future work
We hope to extend these techniques to larger, more complex examples. In particular, probabilistic model checking
may provide a way to quantify the effect of so-called “leak” reactions on the dynamic behaviour of systems. Leaks
are interactions which are not mediated by a toehold – instead, the bonds holding a long double-stranded recognition
domain together begin to fray at the edges, allowing another strand to move in and displace the recognition domain.

15

Initial state: Terminal state:

Figure 8: Initial and terminal states of the three-monomer hairpin-free HCR system

As such, the rates of leak reactions are very low but if a leak reaction does take place it may dramatically alter the
trajectory of the system. Hence it would be helpful to verify that the probability of a leak reaction taking place is
below some threshold, for example.

6 Conclusion
We have used probabilistic model checking to detect an error in a DSD program, verify that the modified version is
correct and examine how the dynamics of the system changes as the populations of transducers increase. We have
also motivated language-integrated exploration of the state-space graph for systems where the network of all possible
chemical reactions would be infinite.

References
[1] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-checking continuous time Markov chains. ACM

Transactions on Computational Logic, 1(1):162–170, 2000.

[2] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for continuous-time Markov
chains. IEEE Transactions on Software Engineering, 29(6):524–541, 2003.

[3] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[4] Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, and E. Shapiro. Programmable and autonomous
computing machine made of biomolecules. Nature, 414(22), 2001.

[5] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of signalling pathways using continuous time
Markov chains. Transactions on Computational Systems Biology VI, 4220:44–67, 2006.

[6] L. Cardelli. Two-domain DNA strand displacement. In DCM, 2010.

[7] L. Cardelli and G. Zavattaro. Turing universality of the biochemical ground form. Mathematical Structures in
Computer Science, 20(1):45–73, 2010.

[8] E. Clarke, O. Grumberg, and D. Peled. Model Checking. The MIT Press, 1999.

16

[9] W. Fontana. Pulling strings. Science, 314(8), 2006.

[10] D. Gillespie. Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry,
81(25):2340–2361, 1977.

[11] S. J. Green, D. Lubrich, and A. J. Turberfield. DNA hairpins: fuel for autonomous DNA devices. Biophysical
Journal, 91, 2006.

[12] M. Hagiya. Towards molecular programming. In G. Ciobanu and G. Rozenberg, editors, Modelling in molecular
biology. Springer, 2004.

[13] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn. Probabilistic model checking of complex
biological pathways. Theoretical Computer Science, 319(3):239–257, 2008.

[14] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A tool for automatic verification of probabilistic
systems. In H. Hermanns and J. Palsberg, editors, Proc. 12th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’06), volume 3920 of LNCS, pages 441–444. Springer,
2006.

[15] Michael Hucka, Andrew Finney, Herbert M. Sauro, Hamid Bolouri, John C. Doyle, Hiroaki Kitano, Adam P. Ar-
kin, Benjamin J. Bornstein, Dennis Bray, Athel Cornish-Bowden, Autumn A. Cuellar, Sergey Dronov, Ernst Di-
eter Gilles, Martin Ginkel, Victoria Gor, Igor I. Goryanin, Warren J. Hedley, T. Charles Hodgman, Jan-
Hendrik S. Hofmeyr, Peter J. Hunter, Nick S. Juty, Jay L. Kasberger, Andreas Kremling, Ursula Kummer,
Nicolas Le Novère, Leslie M. Loew, Daniel Lucio, Pedro Mendes, Eric Minch, Eric D. Mjolsness, Yoichi Na-
kayama, Melanie R. Nelson, Poul F. Nielson, Takeshi Sakurada, James C. Schaff, Bruce E. Shapiro, Thomas S.
Shimizu, Hugh D. Spence, Jörg Stelling, Kouichi Takahashi, Masaru Tomita, John M. Wagner, Jian Wang, and
the rest of the SBML forum. The Systems Biology Markup Language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics, 9(4):524–531, 2003.

[16] M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model checking with PRISM: A hybrid
approach. International Journal on Software Tools for Technology Transfer (STTT), 6(2):128–142, 2004.

[17] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic model checking. In M. Bernardo and J. Hillston, editors,
Formal Methods for the Design of Computer, Communication and Software Systems: Performance Evaluation
(SFM’07), volume 4486 of LNCS (Tutorial Volume), pages 220–270. Springer, 2007.

[18] L. Paulevé, S. Yousseff, M. R. Lakin, and A. Phillips. A generic abstract machine for stochastic process calculi.
In Computational Methods in Systems Biology, 2010.

[19] Andrew Phillips and Luca Cardelli. Efficient, correct simulation of biological processes in the stochastic pi-
calculus. In Computational Methods in Systems Biology, volume 4695 of LNCS, pages 184–199. Springer,
September 2007.

[20] Andrew Phillips and Luca Cardelli. A programming language for composable DNA circuits. J R Soc Interface,
6 Suppl 4:S419–S436, Aug 2009.

[21] C. Priami, A. Regev, E. Shapiro, and W. Silverman. Application of a stochastic name-passing calculus to
representation and simulation of molecular processes. Information Processing Letters, 80(1):25–31, 2001.

[22] L. Qian, D. Soloveichik, and E. Winfree. Efficient Turing-universal computation with DNA polymers. In DNA16,
2010.

[23] G. Seelig, D. Soloveichik, D. Y. Zhang, and E. Winfree. Enzyme-free nucleic acid logic circuits. Science, 314(8),
2006.

[24] S. Venkataraman, R. M. Dirks, C. T. Ueda, and N. A. Pierce. Selective cell death mediated by small conditional
RNAs. Proceedings of the National Academy of Sciences, 2010.

[25] B. Yurke and A. P. Mills Jr. Using DNA to power nanostructures. Genetic Programming and Evolvable Machines
Archive, 4(2):111–122, 2006.

17

[26] D. Y. Zhang and E. Winfree. Control of DNA strand displacement kinetics using toehold exchange. Journal of
the American Chemical Society, 131:17303–17314, 2009.

18

